
DEFENSE SOLUTIONS

TE
CH

NO
LO

GY

W
HI

TE
PA

PE
R

Read About

CURTISSWRIGHTDS.COM

Introduction
Today’s embedded systems are made up of powerful processing subsystems,
each of which is uniquely designed to serve a particular function. In high
performance embedded systems, each of these subsystems are often fully
functional processing nodes themselves, and the limiting factor when optimizing
for the highest system performance often lies in the processor-to-processor
data paths. Passing data from processing node to processing node in the
most efficient way possible, with the lowest latency and highest throughput,
can often have the greatest impact on system performance.

Figure 1: Dolphin eXpressWare Software Model

Dolphin eXpressWare™

SuperSockets

SISCI

Considerations for picking the
right API

PCIe fabric implementation
on Dolphin eXpressWare and
performance considerations

Curtiss-Wright has partnered with Dolphin Interconnect Solutions to bring their
eXpressWare PCI Express® (PCIe) fabric software to the embedded VPX world.
Uniquely optimized to take advantage of hardware features such as DMA and
multi-core processing, eXpressWare can be used to exploit the highest levels
of data fabric performance for the rugged defense industry.
In our first part of this white paper series, we introduced the use of fabrics
for high-performance embedded systems, and focused on the hardware and
architectural options available to the systems designer when using PCIe as
a high performance fabric. In this second part, we present several flexible
software interfaces provided for applications development, comparing their
advantages and tradeoffs. Finally, we present performance benchmarks using
a variety of Curtiss-Wright 3U VPX modules.

Application

Socket Switch

TCP/IP StackSuperSockets

Dolphin Software Components
Standard Software Components

MPI2

SISCI - Shared Memory API

IRM - Interconnect Resource Manager

PCI Express Hardware

IP Driver

IP Driver

Ethernet

Minimizing Latency in Peer-to-Peer
Communications
with Dolphin PCIe® Fabric Communications Library

http://www.curtisswrightds.com
http://www.curtisswrightds.com
http://curtisswrightds.com
http://curtisswrightds.com
https://www.curtisswrightds.com/company/

2

CURTISSWRIGHTDS.COM

2

Dolphin eXpressWare –
A Solution for PCIe Fabric
Ease-of-Use
Dolphin Interconnect Solutions has been developing
processor-to-processor communications solutions for
many years. Hugely successful with their StarFabric
technology, they have created eXpressWare, a system
for processor-to-processor communications using PCIe
connections to create an extremely fast, flexible, and
feature rich message and data transfer mechanism.

Multiple Operating Systems, Multiple
Processor Architectures
To support the needs of today’s most demanding real-
time systems, Curtiss-Wright has worked with Dolphin
to extend eXpressWare, to include Intel® and Power
Architecture® processors for both Linux® and Wind River®
VxWorks® operating system.

With pre-tested and optimized support for Curtiss-Wright
COTS Single Board Computers (SBCs) and Digital Signal
Processing (DSP) engines, eXpressWare offers the most
powerful and flexible high-performance fabric interface
for today’s real-time embedded processing systems.

Hiding Hardware and Complex
Configuration of PCIe Interfaces and
Switches
As we have learned in Part 1, PCI technology does
not directly support host-to-host communications, and
requires complex setup and configuration of PCIe devices
and switches to enable this functionality. eXpressWare
software has been designed to hide the complexities of
PCIe setup, greatly simplifying the setup and configuration
of these host-to-host architectures. Curtiss-Wright
combines eXpressWare with all the predefined PCIe
switch configurations which allows eXpressWare to
automatically detected and configure PCIe endpoints
and transparent or non-transparent ports. In addition,
eXpressWare will setup message queues and data
transfer windows, as well as configure and manage data
transfer resources such as DMA engines. By supporting
standard software APIs, eXpressWare aims to accelerate
and simplify software development.

Software Models
With root nodes, endpoints devices, transparent and
non-transparent ports, programming PCIe fabric
communications can be difficult at best. Dolphin
eXpressWare software masks the complex details of
directly programming PCIe devices while supporting
high-speed, low-latency, peer-to-peer communications.

By abstracting the hardware interface, the software
developer no longer faces the time consuming task of
managing hardware configurations or mastering different
networking protocols. As seen in Figure 2, both Dolphin
specific and open standard software components build
the Dolphin software stack. By supporting a number of
common APIs, Dolphin eXpressWare provides the user
the flexibility to select the solution that best matches their
specific application and performance needs.

At the simplest level, an IP stack driver is supported,
offering developers a simple TCP/IP based software
interface no different than using regular Ethernet
communications. Although the least efficient of the
available interfaces, this model permits customers with
existing applications using Ethernet communications to
convert to PCIe based communications will little to no
application software changes.

eXpressWare also supports a unique implementation of
the Berkeley Sockets API (BSD) that capitalizes on the PCI
Express transport to transparently achieve performance
gains for existing socket-based network applications.
This interface is called SuperSockets.

Finally, for the highest possible performance,
eXpressWare offers an interface called Shared-Memory
Cluster Interconnect or SISCI.

SuperSockets
SuperSockets first appeared in 2004 to address time-
and data-critical applications. For standard socket-based
inter-process communications, SuperSockets offers
a safe reliable alternative to the traditional TCP/UDP/
IP protocol stack as well as supporting UDP multicast.
SuperSockets can accelerate any application that uses
generic BSD sockets with no configuration changes
since the host names will remain the same. Simply by
moving data directly using PCIe instead of Ethernet will
typically reduce the minimum latency by a factor of 10
or more. For example, the average latency across the a
number of Curtiss-Wright SBC and DSP modules was
1.60 microseconds, with some transfers latencies as
low as 1.18 microseconds. In addition to offering lower
effective latency, SuperSockets also yield high message

http://www.curtisswrightds.com
http://curtisswrightds.com
https://www.curtisswrightds.com/company/

3

CURTISSWRIGHTDS.COM

processing rates. Because of the low protocol overhead
of SuperSockets on both the CPU and host adapter,
SuperSockets ensures low CPU utilization and good
scalability as the number of processing cores increases.
If your application requires real-time performance,
SuperSockets has a mode that does not trigger interrupts
during communications, which promotes the greatest
timing predictability and the lowest achievable overhead.

Why are SuperSockets so fast? The SuperSockets
protocol streamlines the transfer with no need to lock
down or register memory. Also, consider that small
messages use basic CPU instructions, and that a single
store instruction can send 8 bytes of data with a raw
worst-case latency of approximately 70 nanoseconds.

For increased fault tolerance and speed, SuperSockets
support multiple host adapters per host. This commitment
to speed included local loopback acceleration of up to 10
times faster than the standard Linux loopback device.

SuperSockets supports all these valuable features in
both user and kernel space applications. SuperSockets
can also accelerate kernel services that employ sockets;
however, these services will need to be modified to take
advantage of SuperSockets. Typically, implemented
by either re-configuring the service or patching and
recompiling the code, this trivial modification will specify a
different address range when opening sockets.

Delivered as a Linux independent binary object, the
SuperSockets code does not interface with, or use, any
Linux functionality directly. Drivers that interface directly
with Linux are compiled from source during installation to
match the running kernel, and the SuperSockets package
consists of both kernel modules and a user-space library.

The implementation of SuperSockets at the kernel level
ensures full compatibility with the TCP/UDP/IP and RDS
datagram sockets that already exist in the operating
systems. Operating between the unmodified binary of
the user’s applications and the operating system, the
explicitly, preloaded, user space SuperSockets library
intercepts any socket-related function calls.

Automatic Fail-Over
Depending on the system or the user’s configuration, if
set to override the system configuration, the library will
pass the function call to either the SuperSockets or
the standard socket implementation. With the selection
of SuperSockets, the kernel module then performs
the transfer using the PCIe interconnect. If a network
problem is detected, SuperSockets will automatically
and transparently switch to the standard socket

implementation even while the socket is passing data.
When the PCIe connection is restored, it will switch back
to using SuperSockets. In addition, SuperSockets will
revert to the Ethernet port when connecting to nodes
outside of the cluster.

SISCI
The EU-funded Esprit Project 23714, “Standard Software
Infrastructures for SCI-based Parallel Systems” created
the Software Infrastructure for Shared-Memory Cluster
Interconnect (SISCI) API. The purpose of this project was
to encourage the development of software for parallel
processing on clusters of workstations connected by
a fast “memory mapped” interconnect initially called
the Scalable Coherent Interface (SCI). The SISCI API
supports data transfers between CPU memories and IO
devices using either distributed remote memory access
or Direct Memory Access (DMA). In addition, users can
trigger remote interrupts as well as catch and handle
events from the underlying interconnect. The SISCI API
protects system security by preventing software from
acting badly and accessing remote memory outside of
exported SISCI segments. Without adding overhead
or performance penalties, the user can write portable
applications to communicate across both little and big
endian systems. Like SuperSockets, the SISCI library and
tools are available in both user and kernel space.

Understanding of the “resource” concept is essential to
successfully using the SISCI API. For example, a virtual
device is a resource, a memory segment is a resource,
a DMA queue is a resource, etc., and a resource can
depend on another resource. A descriptor collects the
properties that described a resource. While the user does
not have direct access to the descriptor, the user controls
the descriptor handler that are used in conjunction with
the API functions. Fortunately, the naming conventions
for the descriptors and handles relate to the name of the
underlying resource. For example, the resource of a local
memory segment has a descriptor named “sci_local_
segment” with a matching “sci_local_segment_t” handle
to as local segment resource.

Memory
Safely accessing memory physically resident on another
machine is the fundamental characteristic and strength of
the SISCI software. When remote memory is mapped into
addressable space of a local process, the remote memory
appears to be local and any data transfer becomes as
simple as a normal “memcpy()”. This transfer method
is called Programmed I/O (PIO) and the “memcpy()”

http://www.curtisswrightds.com
http://curtisswrightds.com
https://www.curtisswrightds.com/company/

4

CURTISSWRIGHTDS.COM

equivalent function is implemented as a sequence of CPU
load and store instructions that sends and retrieves data
from remote memory. PIO has the lowest overhead and
lowest latency of any of the SISCI methods for accessing
remote memory, but the drawback is that the CPU is
consumed reading and writing data to and from remote
memory. For example, on one set of Curtiss-Wright test
boards connected via PCIe, the one-way latency was
measured in the range from 0.54 microseconds to 0.7
microseconds.

Instead of allocating memory using standard functions
such as “malloc()”, a memory segment on the local host is
allocated with a custom function because the driver must
be aware of the segment and its associated parameters. By
using the custom functions, implementation requirements
such as the memory being non-swappable and physically
contiguous are hidden from the user, which helps ensures
portability. Upon successful memory allocation of the local
segment, the function returns the local segment resource,
which includes a segment id, to the user. Let us assume
that one local segment memory has been allocated on
a node designated at the receiver node. Using the local
segment resource, the receiver makes that block of
memory available to the rest of the system. Now, another
node, the sender node, wants to access that memory
segment on the receiver node. The sender node’s first
step is to “connect” to the remote memory segment on
the receiver node. A connect request is sent containing
the receiver’s node id and the id of the memory segment
as well as other parameters. The request returns a handle
to remote segment resource. At this point, the size of the
remote segment can be determined with another function
call. Once a valid resource handle is available, the memory
segment can be mapped into the address space of your
process and accessed like regular memory (i.e. pointer
operations).

DMA
As an alternative method to the PIO data transfers, the
SISCI API also provides for Direct Memory Access (DMA)
transfers when it is available on your hardware. DMA
functionality is only implemented on certain hardware
platforms, such as the Curtiss-Wright CHAMP-XD1 (VPX3-
482) and Power Architecture SBCs (VPX3-131/133). The
user’s application defines the desired data transfers and
the CPU in turn passes the information to the DMA engine.
This frees the CPU to continue processing in parallel with
the transfer, or the CPU can just wait for the transfer to
complete. If the CPU continues processing, the application
can specify a callback function to be invoked when the

transfer is complete. DMA operations have a high startup
cost compared to PIO and should only be invoked for
larger data movements. Another option would be to join
several DMA transfers together to amortize the overhead.
Sometimes, PIO and DMA operations can work together
for maximum application benefits and performance. DMA
programming requires the same code sequence to setup
local and remote memory segments as described for PIO
transfers.

So how do you know when the DMA transfer is complete?
For synchronous behavior, the CPU can just spin and wait.
Other than wasting precious CPU time, the transfer could
error and the CPU could be waiting forever. To avoid this
lockup condition, simply set a timeout value as part of
the call. Instead of waiting for the completion of the DMA
transfer, the CPU can poll at selected intervals until the
transfers completes or returns an error. Using the DMA
queue, the application can also start multiple transfers
from one API call. In addition, the SISCI API provides
functionality for Direct Remote DMA (RDMA).

Interrupts
Interrupts notify a remote application when a predefined
condition occurs. Like memory segments, a SISCI interrupt
is a resource and is allocated on one node and connected
to, and used from, one another. These interrupts can also
pass data as part of the interrupt; however, interrupts
with data normally consume more resources and incur
more latency. To start, the local node allocates, initializes
and makes available an interrupt resource. By default,
the create interrupt function returns an identifier to the
interrupt that the remote application must use to trigger
the interrupt. The local node must share the identifier with
the remote node by some method, usually by shared
memory. To avoid the extra step of passing the identifier,
the local node declares a constant interrupt number that
is passed to the interrupt creation routine. If using this
method, the user must ensure the same interrupt number
is defined on both the send and receive nodes. Similar to
memory segments, the remote node has to connect to the
remote interrupt and receive the handle to the interrupt
resource. Once the remote node has the handle, it can
trigger the interrupt as needed. Given that the application
on the local is waiting or has set a callback, the interrupt
will be handled; otherwise, the interrupt will be lost. An
error occurs when the timeout expires, or if some other
thread removes the interrupt.

http://www.curtisswrightds.com
http://curtisswrightds.com
https://www.curtisswrightds.com/company/

5

CURTISSWRIGHTDS.COM

Events and Callbacks
Hardware, drivers, and even the application can generate
events. Some examples of an event include a cable
disconnection, a node failure resulting in the disappearance
of a remote segment, the completion of a DMA transfer
or an interrupt. The SISCI driver handles some events
directly while forwarding other events to the application,
which makes the choice to ignore or handle them. As
mentioned above, the application can block an event
or setup a callback. To setup a callback, the mechanics
are the same whether the function is creating a local
memory segment, connecting a remote section, starting
DMA transfer or creating an interrupt. In all instances,
the setup function has parameters that include a flag
indicating the intention to use the callback mechanism,
a pointer to the callback function and the arguments for
the callback function. Defining the argument parameter
as “void*” allows anything from nothing, to a single value
to a pointer to a larger data structure to be passed to it.

Multicast
Multicast, sometimes referred to as reflective memory,
transfers the same data to multiple remote nodes. Since
multicast is implemented in hardware, no software
overhead is incurred. Multicasting of the data buffers can
use PIO, DMA, or direct data moves from PCIe devices,
such as GPUs and FPGAs. The PCIe multicast uses
main system memory, which is considerably faster than
specialized device memory. Because main memory is
cached, data updates from remote nodes will automatically
invalidate the CPU’s cache, which helpfully guarantees
data consistency. The ability to use up to four independent
reflective memory segments, and the selection of which
nodes that will receive the multicast data, are a few of the
strengths of Dolphin’s implementation.

Another major differentiator is the utilization of two different
addresses, one for reading and another for writing.
The PCIe multicast process distributes the entire PCIe
bandwidth simultaneously to all remote nodes. Ping-pong
testing performed on a 2-8 nodes of different Curtiss-
Wright boards resulted in an average 1.98 microseconds
latency, along with very low jitter. One way latency for
three nodes measured at just 0.99 microseconds, with
eight nodes resulting in 1.27 microsecond latency. The
timing was recorded when all the remote nodes replied
with an ACK after receiving the data.

Note: multicast is only supported on systems configured
with a central switch.

Remote Peer-to-Peer
PCIe peer-to-peer (P2P) communications enables regular
PCIe devices to perform direct data transfers without
using main memory as temporary storage and without
using the CPU to move the data. P2P reduces latency
and communication overhead and typically benefits
GPUs, FPGA, and high-speed data input devices. The
SISCI API simplifies the setup and management of P2P
transfers, and the P2P functionality can be combined
with the reflective memory functionality to multicast data
to multiple devices transparently.

Each hardware resource on the PCIe fabric must be
mapped to the controlling application with the appropriate
SISCI API functions. First, the user should specify the
physical address and the number of bytes inside the
PCIe device that will form the SISCI segment. After the
segment is prepared, a remote host can connect and
map the physical memory. To enable a local PCIe device
to access a remote SISCI memory or remote device
segment, the code must retrieve the corresponding I/O
address in the local address space. This information will
be available via a function call after the remote segment
has been connected and mapped. To ensure the master
access is passing through the required NT mapping
function, the PCIe device must register as an approved
PCIe master. For example, an FPGA device that is setup
as a PCIe master can direct memory using the address
provided.

Picking the right API: Tradeoffs and
Performance Considerations
For applications that are already written using socket
communications, the use of TCP/IP sockets represents
the lowest risk and shortest software development effort.
This API incurs the highest software overhead, and results
in the lowest performance of the available eXpressWare
software APIs. Systems moving from Ethernet to PCIe
communications will still benefit from an increase in overall
performance.

SuperSockets increases performance dramatically.
Although some software rework will be required, most well
designed software can be adapted to use SuperSockets
with relative ease, and the performance benefits will be
seen quickly.

The highest performance API is the SISCI interface. New
applications using PCIe fabric communications should be
written with the SISCI API, which will achieve the highest
possible performance of all eXpressWare APIs.

http://www.curtisswrightds.com
http://curtisswrightds.com
https://www.curtisswrightds.com/company/

6

CURTISSWRIGHTDS.COM

Curtiss-Wright PCIe Fabric
Implementation with Dolphin
eXpressWare
Performance Considerations

PCIe speeds, Lane Widths, and Throughput
Although there are many combinations of PCIe
connections, the most common and practical connections
for a 3U VPX module are Gen2 x4 and x8 lane, and Gen3
x4 and x8 lane.In this section, these are the PCIe transfer
speeds and lane widths used for benchmark examples.

Transferring Data: Simple R/W vs. DMA
Endpoints connected with PCIe are configured with
memory addressable windows, permitting simple
communications using simple processor read and write
operations. A processor can write data directly to the
PCIe mapped memory address, and endpoint device
receives the data via PCIe transactions.

This form of communications is sometimes called
Processor I/O or PIO mode. It is extremely simple to write
software using this data passing mechanism within an
application, however it will clearly use processor CPU
cycles. If the processor has DMA capabilities, the DMA
engine can be used to transfer data across the PCIe
bus with block transfer read/write operations, freeing up
precious CPU cycles.

Intel processors have a unique feature called PCIe
write combining, where sequential write operations
are combined into a single PCIe burst write operation.
This results in extremely high bus utilization and data
throughput.

Optimization
The eXpressWare software has been optimized to operate
in PIO or in DMA mode, depending on the type and size
of data being transferred. For small size messages, PIO
mode is extremely efficient, with the lowest possible
latency and fast data transfers. For large block data
transfers, the DMA mode of operation can be used to
free up CPU resources.

eXpressWare is smart enough to select PIO or DMA
modes of operation dynamically, making the best use of
hardware resources for every type of data transaction.
Small data transactions would be inefficient if extra cycles
are spent setting up DMA operations. In many case,
especially for short messages, the entire message can
be transferred with simple PIO operations before a single
DMA cycle would have been executed.

Supported Curtiss-Wright Modules
The following Curtiss-Wright modules are presently
supported by the eXpressWare PCIe Fabric Software:

 + VPX3-1220 = Intel Xeon® 7th Gen “Kaby Lake” SBC

 + VPX3-1259 = Intel Core i7 5th Gen “Broadwell” SBC

 + VPX3-1260 = Intel Xeon 8th Gen “Coffee Lake” SBC

 + VPX3-131 = NXP P4080 SBC

 + VPX3-133 = NXP T2080 SBC

 + VPX3-482 = CHAMP-XD1 Intel Xeon D DSP Engine

 + XMC-121 = Intel Xeon 7th Gen “Kaby Lake” XMC
Mezzanine

The eXpressWare PCIe Fabric Software has been
optimized to make use of available hardware resources
on each of these modules. The VPX3-1220, VPX3-1259,
and VPX3-1260 with Intel Core i7 and Xeon processors
do not have high performance DMA capabilities, and
thus operate in PIO mode exclusively. On these modules,
eXpressWare has been optimized to leverage Intel’s PCIe
write combining to achieves the highest possible PCIe
bus utilization. The VPX3-131/133 and CHAMP-XD1
modules do support DMA operations, and automatically
select PIO or DMA operations for each transaction to
maximize throughput and minimize processor overhead.

Performance - Data Throughput and
Latency
Curtiss-Wright has performed extensive testing and
benchmarks with the eXpressWare PCIe Fabric software
under various combinations of modules and operating
systems using both PIO and DMA operations. This section
summarizes some of these benchmarks.

http://www.curtisswrightds.com
http://curtisswrightds.com
https://www.curtisswrightds.com/company/

7

CURTISSWRIGHTDS.COM

CHAMP-XD1 to CHAMP-XD1 under Linux
Figure 2 shows the performance of two CHAMP-XD1 Intel Xeon-D DSPs via a 4-lane PCIe Gen3 interface which sports
a maximum theoretical bandwidth of 3.94 GBps. For this test, both XD1s were running Linux and the data transfers
tested use the PIO mode of operation for comparison to the SBCs such as the VXP3-1259. As expected, the shape
of the graphs are very similar with the increase of performance due to Gen3 interface noted.

Figure 3: VPX3-1259 to VPX3-1259 under Linux, PIO Mode Performance

VPX3-1259 to VPX3-1259 PIO mode, Gen2 x4, Linux

Segment Size

4

8

10

3

7

9

2

0
4 168 32 128 512 2048 4096256 102464

6

1

5

Regular Socket

(TCP over PCIe)

Super socket, Ping

Super socket,
PingPong

SISCI bench

M
es

sa
ge

 L
at

en
cy

 (u
S

)

CHAMP-XD1 to CHAMP-XD1 PIO mode, Gen3 x4, Linux

Max Throughput

SISCI bench

4000

2000

3000

1000

3500

1500
Super socket,

PingPong

2500

 500

 0
64 128 16384 32768 655364 8 16 32 256 512 1024 2048 4096 8192

Super socket
Ping

Regular socket

Figure 2: CHAMP-XD1 to CHAMP-XD1 under Linux, PIO Mode Performance

VPX3-1259 to VPX3-1259 PIO mode, Gen2 x4, Linux
2500

2000

1500

1000

500

0
4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

Max Throughput

Super socket, Ping

Super socket,
PingPong

Regular Socket
(TCP over PCIe)

SISCI bench

Segment Size

VPX3-1259 to VPX3-1259 under Linux
Figure 3 shows the performance of two VPX3-1259 Intel Core i7 Broadwell SBCs connected with a 4-lane PCIe Gen2
interface, which has a maximum theoretical bandwidth of 2.0 GBps. In this benchmark, both SBCs are running Linux.
All data transfers are via PIO mode of operation, as a high performance DMA engine is not available in the Core i7
chipset.

http://www.curtisswrightds.com
http://curtisswrightds.com
https://www.curtisswrightds.com/company/

8

CURTISSWRIGHTDS.COM

Data throughput and latency are shown, and as expected, the SISCI API exhibits the highest performance and lowest
latency of all software APIs. Throughput quickly reaches a peak of 1.45 GBps at a data transfer size of 256 bytes,
representing 73% of theoretical PCIe bus performance. Larger data transfer sizes do not achieve higher throughput,
as the PCIe bus itself limits transactions to 128 or 256 bytes (chipset dependent), so even larger transfers are limited
by the PCIe bus transaction process. SuperSocket protocol throughput is not as efficient as the SISCI protocol,
and standard TCP socket throughput is even lower, reaching a maximum of only 0.84 GBps even for large 64K size
packets. This is due to the Linux software stack that handles regular sockets, which is not as efficient as the SISCI or
SuperSocket drivers. Message latency is also shown. Using SISCI, a messages of 1 KB has a latency of approximately
0.72 microseconds. SuperSocket latency is slightly higher at 1.07 microseconds and the SuperSocket PingPong
latency, transferring messages in both directions, makes the round trip in just 4.46 microseconds. Regular TCP socket
interface latency is much higher for all size packets, primarily due to socket software stack execution, requiring almost
8 microseconds for even the shortest of messages.

VPX3-1259 to VPX3-1259 under VxWorks
Figure 4 shows the same two VPX3-1259 SBCs connected with the same 4-lane PCIe Gen2 interface, but this
time running the VxWorks operating system. Data throughput peaks at 1.54 GBps, or 77% of theoretical PCIe bus
performance, slightly higher than the same configuration under Linux. This is due to the better real-time performance of
VxWorks over Linux. Latency is also shown, with higher performance (lower latency) than Linux. A 256 byte messages
transfers in as low as 0.18 microseconds.

Figure 4: VPX3-1259 to VPX3-1259 under VxWorks, PIO Mode Performance

4

3

2

0

4 168 32 2048 409664

6

1

5

La
te

nc
y

(u
S

)

VPX3-1259 to VPX3-1259 PIO mode, Gen2 x4, VxWorks7
2500

2000

1500

1000

500

0

MAX Throughput

MEMCPY

MMX_PENTIUM_4_XC
HG

Copy_Loop_Prefetch

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

Segment Size Segment Size
128 512256 1024

OS_COPY, MEMCPY
OS_COPY_Prefetch,
Copy_Loop_Prefetch

MMX_PENTIUM_
4_XCHG

VPX3-1259 to VPX3-1259 PIO mode, Gen2 x4, VxWorks7

http://www.curtisswrightds.com
http://curtisswrightds.com
https://www.curtisswrightds.com/company/

9

CURTISSWRIGHTDS.COM

VPX3-1259 to VPX3-1259 under VxWorks, PCIe Lane Widths and Speeds
The effects of wider PCIe lane widths (ie: 8-lane .vs. 4-lane) and higher PCIe transfer speeds (ie: Gen3 .vs. Gen2) are
shown in Figure 5. All these benchmarks are using the SISCI API under VxWorks.

As expected, wider lane widths and higher PCIe bus speeds produce better results. Using an 8-lane PCIe Gen3
interface, the two SBCs achieve data transfer rates of up to 5.62 GBps, or 71% of the theoretical 7.88 GBps bandwidth
of this PCIe connection. Interestingly, for data transfers under 128 bytes, all three configurations have the same data
throughput. This is due to the way the Intel PCIe controller stores up PCIe data transactions and then bursts data
onto the PCIe bus. Data throughput of a 4-lane Gen3 and an 8-lane Gen2 interface are almost identical, as is their
theoretical maximums. Similarly, latency is almost identical for transfer lengths up to 128 bytes, and then the effect of
faster data transfers begins to show with larger data transfers.

Figure 5: VPX3-1259 to VPX3-1259 under VxWorks, Effect of PCIe Lane Widths and Speeds

VPX3-1259 to VPX3-1259 PIO mode, VxWorks7, Various PCIe
Lanes & Speeds

9000

7000

4000

1000

8000

5000

6000

3000

2000

0

Segment Size
64328 164 128 256 512 1024 2048 4096 8192 16384 32768 65536

Segment Size
4 168 32 128 512 2048 4096256 102464

VPX3-1259 to VPX3-1259 PIO mode, VxWorks7, Various PCIe
Lanes & Speeds

3.5

2.5

1.5

0.5

3

2

1

0

La
te

nc
y

(u
S

)

8xGen3

4xGen2

8xGen2

4xGen3

http://www.curtisswrightds.com
http://curtisswrightds.com
https://www.curtisswrightds.com/company/

10

CURTISSWRIGHTDS.COM

Figure 6: VPX3-133 to VPX3-133 under Linux, DMA Mode Performance

512 1024 2048 4096

Segment Size

VPX3-133 to VPX3-133 DMA mode, Gen2 x4, Linux

Segment Size

512

256

VPX3-133 to VPX3-133 DMA mode, Gen2 x4, Linux

VPX3-133 to VPX3-133 with DMA under Linux
Figure 6 shows two VPX3-133 Power Architecture T2080 SBCs communicating, again using 4-lane PCIe Gen2
interfaces with maximum theoretical performance of 2.0 GB/s. DMA performance is slightly higher than the Intel Core
i7 (1258) PIO performance, hitting a peak of 1.54 GBps (77%). This demonstrates that PIO and DMA modes both
achieve similar throughput, thus we can conclude the maximum throughput is not limited not by the processor transfer
mechanism. Not shown is the CPU overhead for these two modes of data transfer, where we would see the PIO mode
of the Intel Core i7 consuming CPU cycles, and the DMA mode of the Power Architecture T2080 leaves the CPU sitting
idle, free to perform other tasks or waiting for DMA operations to be complete.

Latency with these Power Architecture SBCs is slightly higher than the Intel Core i7 SBCs, taking 1.75 microseconds
to push a 256 byte message to the other host, most likely due to the lower overall CPU performance of these Power
Architecture processors.

http://www.curtisswrightds.com
http://curtisswrightds.com
https://www.curtisswrightds.com/company/

11

Author(s)

© 2020 Curtiss-Wright. All rights reserved. Specifications are subject to change without
notice. All trademarks are property of their respective owners. I W098.0220

CURTISSWRIGHTDS.COM

11

Aaron Frank, BaSC
Senior Product Manager
Curtiss-Wright Defense Solutions

Tammy Carter, MSCS
Senior Product Manager
Curtiss-Wright Defense Solutions

Learn More
Product Sheets

 › Dolphin PCIe Fabric Communications Library

 › OpenHPEC Accelerator Suite

 › VPX3-133 3U VPX SBC

 › VPX3-131 3U VPX SBC with NXP Power Architecture P4080 Processor

 › VPX3-1220 3U VPX SBC with Intel Xeon 7th Gen Processor

 › VPX3-1259 3U VPX SBC with Intel Core i7 Broadwell Processor

 › VPX3-1260 3U VPX SBC with Intel Xeon 8th Gen Processor

 › CHAMP-XD1/VPX3-482 3U VPX DSP with Intel Xeon D Processor

 › XMC-121 3U XMC Mezzanine with Intel Xeon 7th Gen Processor

White Paper

 › Enhancing PCIe® Communications to Eliminate Bottlenecks with Dolphin PCIe
Fabric Communications Library

Summary
Rugged embedded systems depend on high performance fabrics to reduce
latency in data transfer times. In this second part of our Dolphin white paper
series, we discussed several different software interfaces provided for applications
development, compared their advantages and tradeoffs. Dolphin’s support of
a number of common software APIs offers high-speed, low-latency, peer-to-
peer communications while masking the complex details of programming PCIe
devices. Curtiss-Wright’s partnership with Dolphin provides our customers
with access to all these benefits on our embedded hardware, enabling them
the flexibility to select a solution tailored to their own unique application and
performance needs. In part three of this series, we will take an in-depth look at
device sharing and multicast applications.

http://www.curtisswrightds.com
http://curtisswrightds.com
https://www.curtisswrightds.com/company/
https://www.curtisswrightds.com/products/cots-boards/hpec-tools/dolphin-pci-fabric-communications.html
https://www.curtisswrightds.com/products/cots-boards/processor-cards/software-ip/openhpec.html
https://www.curtisswrightds.com/products/cots-boards/processor-cards/3u-ppc-sbc/vpx3-133.html
https://www.curtisswrightds.com/products/cots-boards/processor-cards/3u-ppc-sbc/vpx3-131.html
https://www.curtisswrightds.com/products/cots-boards/processor-cards/3u-intel-sbc/VPX3-1220.html
https://www.curtisswrightds.com/products/cots-boards/processor-cards/3u-intel-sbc/vpx3-1259.html
https://www.curtisswrightds.com/products/cots-boards/processor-cards/3u-intel-sbc/vpx3-1260.html
https://www.curtisswrightds.com/products/cots-boards/processor-cards/3u-intel-dsp/champ-xd1.html
https://www.curtisswrightds.com/products/cots-boards/processor-cards/xmc-intel-sbc/XMC-121.html
https://www.curtisswrightds.com/infocenter/white-papers/dolphin-pcie-fabric-part-1-hardware-architecture.html
https://www.curtisswrightds.com/infocenter/white-papers/dolphin-pcie-fabric-part-1-hardware-architecture.html

