
Flexible Device Sharing in PCIe Clusters using Device Lending
Jonas Markussen∗

Simula Research Laboratory
Oslo, Norway

jonassm@simula.no

Lars Bjørlykke Kristiansen
Dolphin Interconnect Solution AS

Oslo, Norway
larsk@dolphinics.no

Håkon Kvale Stensland∗
Simula Research Laboratory

Oslo, Norway
haakonks@simula.no

Friedrich Seifert
Dolphin Interconnect Solution AS

Oslo, Norway

Carsten Griwodz†
University of Oslo
Oslo, Norway

Pål Halvorsen∗
Simula Research Laboratory

Oslo, Norway

ABSTRACT
Processing workloads may have very high IO demands, exceeding
the capabilities provided by resource virtualization and requiring
direct access to the physical hardware. For computers that are in-
terconnected in PCI Express (PCIe) networks, we have previously
proposed Device Lending as a solution for assigning devices to
remote hosts. In this paper, we explain how we have extended our
implementation with support for the Linux Kernel-based Virtual
Machine (KVM) hypervisor. Using our extended Device Lending, it
becomes possible to dynamically “pass through” physical remote
devices to VM guests while still retaining the flexibility of virtual-
ization, something that previously required extensive facilitation in
both hypervisor and device drivers in the form of paravirtualization.

We have also improved our original implementation with sup-
port for interoperability between remote devices. We show that it
is possible to use multiple devices residing in different hosts, while
still achieving the same bandwidth and latency as native PCIe, and
without requiring any additional support in device drivers.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; Interconnection architectures; Cloud computing;

KEYWORDS
Resource sharing, resource allocation, networked resources, virtu-
alization, PCIe, data access, IOMMU, non-transparent bridging
ACM Reference Format:
JonasMarkussen, Lars Bjørlykke Kristiansen, HåkonKvale Stensland, Friedrich
Seifert, Carsten Griwodz, and Pål Halvorsen. 2018. Flexible Device Sharing
in PCIe Clusters using Device Lending . In ICPP ’18 Comp: 47th International
Conference on Parallel Processing Companion, August 13–16, 2018, Eugene, OR,
USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3229710.
3229759
∗Also with University of Oslo.
†Also with Simula Research Laboratory.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6523-9/18/08. . . $15.00
https://doi.org/10.1145/3229710.3229759

1 INTRODUCTION
Different processing workloads can have highly variable demands
to processing power and IO resources. Cloud providers, such as
Amazon AWS and Microsoft Azure, often base their pricing models
on offering different, or even custom, IO device configurations for
their VM images. However, as physical hardware resources may
be limited, it is desirable to be able to scale up and allocate more
resources and release them on demand. Dynamic scaling based on
current workload requirements leads to more efficient utilization
of the available physical resources.

Such scaling is made possible by VM hypervisors through re-
source virtualization, primarily software emulation and paravirtual-
ization. Software-emulated devices appear to the VM guest as an IO
device, but all functionality is handled in the VM implementation.
Paravirtualized devices also offer device functionality in software,
but the software-defined device resembles the physical device more
closely. As both methods of resource virtualization require facilita-
tion in the hypervisor, the availability of different types of resources
is limited by the underlying virtualization technology being used.
In addition, workloads that rely on multi-device interoperability
becomes a challenge, as setting up necessary memory mappings
for Remote Direct Memory Access (RDMA) and device-to-device
access is generally not possible without extensive facilitation in
both the hypervisor and VM guests themselves.

Many modern processors implement an IO Memory Manage-
ment Unit (IOMMU), allowing devices to be passed through to a VM
instance, without compromising the memory encapsulation pro-
vided by the virtualized environment. While pass-through allows
physical hardware to be used with minimal software overhead, this
technique does not have the flexibility of resource virtualization;
using pass-through, VM instances become tightly coupled with the
resources they use, and distributing VMs across multiple hosts in a
way that maximizes utilization becomes a challenge.

For machines that are interconnected in a PCIe cluster, where IO
devices and interconnection technology are attached to the same
PCIe fabric, we have proposed a different strategy to resource shar-
ing using Device Lending [15]. Device Lending exploits the memory
addressing capabilities inherent in PCIe networks in order to de-
couple devices from the hosts they physically reside in, allowing
them to be dynamically reassigned to different machines and used
as if they were locally installed.

In this paper, we describe our improved Device Lending concept
by extending it with support for the KVM hypervisor, allowing
physical remote devices to be passed through to a VM instance.

https://doi.org/10.1145/3229710.3229759
https://doi.org/10.1145/3229710.3229759
https://doi.org/10.1145/3229710.3229759

ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA Jonas Markussen et al.

CPU Cores

PCIe Complex (Root)

including chipset
and memory controller Memory

(RAM)

GPU SSDEthernet
Card

Address Space
0x0000...

0xFFFF...

Eth. Card

Memory

GPU

SSD

Intr. Vectors

Figure 1: Device memory is mapped into the same address
space as the CPUs, allowing devices to access both system
memory and other devices.

We have also implemented support for direct device-to-device ac-
cess, enabling true multi-device interoperability. Finally, we also
investigate the impact of IO address virtualization on performance,
particularly in the case of device-to-device access. Our findings
show that we are able to borrow and use multiple remote devices,
achieving the same bandwidth as native PCIe and without adding
any additional latency beyond that of the interconnect. With virtu-
alization support, it is possible for Cloud providers to offer highly
customizable configurations of devices that are passed through to
VMs. Combined with support for efficient device-to-device data
transfers, it is possible to create highly flexible and dynamic config-
urations of local and remote IO devices in a PCIe cluster.

The remainder of this paper is organized as follows: we present
essential capabilities of PCIe in Section 2. In Section 3, we discuss
related work. In Section 4, we provide an outline of our original De-
vice Lending implementation. We describe how we have extended
Device Lending with virtualization support in Section 5. Section 6
describes how we have added support for borrowing from multi-
ple lenders, followed by a performance evaluation in Section 7. A
summary of our findings and conclusion is presented in Section 8.

2 PCIE OVERVIEW
PCIe is today the most widely adopted industry standard for con-
necting hardware peripherals (devices) to a computer system [10].
Device memory, such as register and onboard memory are mapped
into an address space shared with the CPUs and their memory
controllers (Figure 1). Memory operations, such as reads and writes,
are transparently routed onto the PCIe fabric. This enables a CPU
to access device memory, as well as allowing devices capable of
DMA to directly read and write to system memory.

PCIe uses point-to-point links, where a link consists of 1 up to
16 lanes. Each lane is a full-duplex serial connection. Data is striped
across multiple lanes and wider links yield higher bandwidths. The
current revision, PCIe Gen3 [21], specifies a theoretical maximum
data rate of 984.5 MB/s per lane.

Not unlike other networking technologies, PCIe also uses a lay-
ered protocol. The uppermost layer is called the transaction layer,
and one of its responsibilities is to forward memory reads and
writes as transaction layer packets (TLPs). It is also responsible
for packet ordering, meaning that memory operations in PCIe are
strictly ordered. Underneath the transaction layer lies the data link
layer and the physical layer, and their responsibilities include flow
control, error correction, and signal encoding.

As shown in Figure 2, the entire PCIe network is structured as
a tree, where devices form the leaf nodes. In PCIe terminology,

SwitchRoot port EndpointLink

NTB
Adapter

CPU Cores

PCIe Complex (Root)

including chipset
and memory controller

SSD

GPU

Memory

External Cable

CPU Cores

PCIe Complex (Root)

including chipset
and memory controller Memory

GPU
NTB

Adapter
Ethernet

Card

System A System B

Ethernet
Card

Figure 2: Example of a PCIe topology. Two independent net-
works are connected together using an NTB. The NTB trans-
lates IO addresses between the two different address spaces,
creating a shared address space between the networks.

a device is therefore referred to as an “endpoint”. Switches can
be used to create subtrees in the network. The “root ports” are at
the top of the tree, and act as the connection between the PCIe
network and the CPU cores (CPUs, chipset, and memory controller).
The entire PCIe network comprises the “fabric”. Note that in the
figure, two independent network roots are interconnected using a
Non-Transparent Bridge (NTB), which we will explain below.

2.1 Memory addressing and forwarding
The defining feature of PCIe is that devices are mapped into the
same address space as the CPU and system memory (Figure 1).
Because this mapping exists, a CPU is able to read from and write
to device memory regions, the same way it would read from system
memory. No specialized port IO is required. Likewise, if a device is
capable of DMA, it can read from and write to system memory, as
well as other devices on the fabric.

In order to map device memory regions to address ranges, the
system scans the PCIe tree and accesses the configuration space of
each device attached to the fabric. The configuration space describes
the capabilities of the device, such as describing the device’s mem-
ory regions. Switches in the topology are assigned the combined
address range of their downstream devices. This allows forwarding
of memory operations based on address ranges to occur in a strictly
hierarchical fashion in the tree, and TLPs are forwarded either up-
stream or downstream. An important property of this hierarchical
routing is that packets do not need to pass through the root, but
can be routed using the shortest path if the chipset allows it. This
is referred to as peer-to-peer in PCIe terminology. Using Figure 2,
System B’s lower switch will have the address range of both the
Ethernet card and the SSD, allowing TLPs to be routed directly
between them, device to device, without passing through the root.

Another significant feature of PCIe, is the use ofmessage-signalled
interrupts (MSI) instead of physical interrupt lines. MSI-capable de-
vices post a memory write TLP to the root using a pre-determined
address. The write TLP is then interpreted by the CPU, which uses
the payload to raise an interrupt specified by the device.

2.2 Virtualization support and pass-through
Modern processor architectures implement IOMMUs, such as Intel
VT-d [3]. The IOMMU provides virtualization of addresses between
the PCIe fabric and the CPU (including memory controllers). One of

Flexible Device Sharing using Device Lending ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA

the most important features of the IOMMU is the ability to translate
addresses of DMAoperations from any IO device [1]. In other words,
it translates virtual IO addresses to physical addresses.

Similarly to pages mapped by an MMU for individual userspace
processes, an IOMMU can group PCIe devices into IOMMU domains.
As each domain has its own individual mappings, members of
an IOMMU domain consequently have their own private virtual
address space. Such a domain can be part of the virtualized address
space of a VM, while other PCIe devices and the rest of memory
remain isolated. This allows the VM to interact directly with the
device using native device drivers from within the guest, while the
host retains the memory isolation provided by the virtualization.
This is often referred to as “pass-through”.

As most device drivers make the assumption that they have
exclusive control over a device, sharing a device between several
VM instances requires either paravirtualization, such as Nvidia
vGPUs [17], or SR-IOV [22]. SR-IOV-capable devices allow a sin-
gle physical device to act as multiple virtual devices, allowing a
hypervisor to map the same device to several VMs.1

2.3 Non-Transparent Bridging
Because of its high bandwidth and low latency, it is desirable to
extend the PCIe fabric out of a single computer and use it for high-
speed interconnection networks [23]. This can be accomplished
using an NTB implementation [24]. Although not standardized,
NTBs are a widely adopted solution for interconnecting indepen-
dent PCIe network roots, and all NTB implementations have similar
capabilities. Some processor architectures, such as recent Intel Xeon
and AMD Zen, have a built-in NTB implementation [27].

Despite the name, an NTB actually appears as a PCIe endpoint.
This is illustrated in Figure 2, where the connected systems have
their own NTB adapter card. Just like regular endpoints, they ap-
pear to have one or more memory regions that can be read from or
written to by CPUs or other devices. Memory operations on these
regions are forwarded from one PCIe network to the other. As the
interconnected networks use different layouts for their address
space, the NTB performs a hardware address translation on the
TLPs during the forwarding. Consequently, NTBs create a shared
memory architecture between separate systems with very low ad-
ditional overhead in terms of latency.

As the address ranges associated with the NTB may be too small
to cover the entire address space of the different systems, some
NTBs support dividing their range into segments. A segment can
be mapped anywhere into the remote system’s address space. Due
to the complexity of translating addresses in hardware, the number
of possible mappings to remote systems is limited.

3 RELATEDWORK
The idea of a unified network for the inner components of a com-
puter with those of another is not new. It was already imagined for
both ATM [26] and SCI [4]. These ideas never got implemented,
because none of these technologies were picked up for internal IO
interconnection networks.

1Note that Device Lending does not make any distinction between physical devices
and SR-IOV virtual devices.

PCIe is the dominant standard for internal IO bus, and is also
proving to be a relevant contender for external interconnection
networks. PCIe, however, was designed to be used within a sin-
gle computer system only. In this section, we will discuss some
solutions for sharing IO devices between multiple hosts.

3.1 Distributed IO using RDMA
There are several technologies which are more widely adopted for
creating high-speed interconnection networks than PCIe. These in-
clude InfiniBand, as well as 10Gb and 40Gb Ethernet [5, 16]. Tomake
use of their high throughput, they rely on RDMA [29]. Variants are
summarized by Huang et al. [12] and include native RDMA over
InfiniBand, Converged Enhanced Ethernet (RoCE), and Internet
Wide Area RDMA Protocol (iWARP). To alleviate the complexity
of programming for RDMA, middleware extensions like RDMA for
MPI-2 [14] and rCUDA [9] have been developed. Those middleware
extensions have also been extended with device-specific protocols
like GPUDirect for RDMA [25, 31] or NVMe over Fabrics.

While RDMA extensions may achieve very high throughput on
the interconnection links, they are not as closely integrated with
the IO bus fabric as PCIe, and require translation between proto-
col stacks. Another drawback is that it is currently only possible
for such protocols to work with devices and device drivers that
explicitly supports them. A proposed approach for overcoming the
protocol translation overhead would be to integrate network in-
terface functionality directly into SoCs [7], but the improvement
only takes effect when the SoCs are in communication with each
other. This idea is followed in the rack-scale architecture [6], which
generalizes a trend returning from switched cluster architectures
to hypercube architectures [11, 32]. These approaches all focus
on efficient data exchange for parallel processing, rather than on
resource sharing between logically separate compute units.

3.2 Virtualization approaches
Multi-Root IO Virtualization (MR-IOV) [19] specifies how several
hosts can be connected to the same PCIe fabric. The fabric is logi-
cally partitioned into separate virtual hierarchies, i.e., PCIe roots,
where each host sees its own hierarchy without knowing about
MR-IOV. MR-IOV requires multi-root aware PCIe switches, and,
in the same way as SR-IOV requires SR-IOV-aware devices to be
able to provide virtual devices to several VMs, devices must be
multi-root aware to provide virtual devices to several PCIe roots
(and thus hosts) at the same time.

Despite being standardized in 2008 [19], we are not aware of
any MR-IOV-capable devices. Instead, there are attempts to achieve
MR-IOV-like functionality through a combination of SR-IOV with
NTB-like hardware [28].2

Another virtualization approach is the Landon system [30]. Lan-
don uses all PCIe and virtualization features as proposed in this
paper, but it achieves less freedom than our Device Lending as
devices are physically installed in a dedicated management host
that is able distribute devices to different remote guest VMs. In
addition, devices are assigned for the lifetime of the guest OS, and
can not be easily reassigned on the fly.

2This is also possible with Device Lending, see footnote 1.

ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA Jonas Markussen et al.

NTB
Adapter

CPU Cores

PCIe Complex (Root)

Remote
Device

Local
Memory

External Cable

CPU Cores

PCIe Complex (Root)

Memory

Remote
Device

NTB
Adapter

"Lender" (Remote) "Borrower" (Local)

Injected
Device

Borrower's
Address Space

Lenders's
Address Space

Memory

NTB Adapter

Local Memory

NTB Adapter

Remote
Device

Borrower's
Local Memory

Borrower's
Intr. Vectors

DMA Window

MSI Window

Device
Memory
Regions

DMA Buffers

MSI/Intr. VectorsIntr. Vectors

Figure 3: Using an NTB, it is possible to map the memory regions of a remote device so local CPUs are able to read and write
to device registers. The remote system can in turn reverse-map the local system’s memory and CPUs for the device, making
DMA and MSI possible. Device Lending injects a hot-added device into the Linux kernel device tree using these mappings.

3.3 Partitioning the fabric
Rack-scale computers are so-called converged infrastructure sys-
tems, where both IO devices and interconnects are attached to a
shared PCIe fabric. Rack-scale relies on dynamically partitioning
the shared fabric into different subfabrics (using fabric IDs), in or-
der to assign individual devices to different CPUs. Unlike MR-IOV,
rack-scale does not require support in devices, but it does require
dedicated hardware switches which support the fabric ID header
extension in order to configure routes between devices and CPUs.
Additionally, these systems are only modular to the extent of typical
blade server configurations, and scaling beyond a single system
requires facilitation using traditional distributed methods. Adding
new IO devices requires additional modules, often only available
from the same vendor.

There have been some efforts in achieving live-partitioning us-
ing PLX PCIe switches [33], but a performance evaluation of this
appears to be lacking.

4 DEVICE LENDING
As illustrated in Figure 3, it is possible to map the memory regions
of remote PCIe devices using an NTB. A local CPU can perform
memory operations on a remote device, such as reading from or
writing to registers. Conversely, it is also possible to map local
resources for the remote device, allowing it to write MSI interrupts
and access the local system’s memory across the NTB.

In order to make such mappings transparent to both devices and
their drivers, we have previously implemented Device Lending [15]
for an unmodified Linux kernel. Our implementation is composed
of two parts, namely a “lender”, allowing a remote unit to use its
device, and the “borrower” using the device. By emulating a hot-
plug event [23] while the system is running, we insert a virtual
device into the borrower’s local device tree, making it appear to
the system and device driver as if a device was hot-added in the
system. The device’s memory regions are mapped through the
NTB, allowing the local driver to read and write to device registers
without being aware that the device is actually remote.

The lender is responsible for setting up reverse mappings for
DMA and MSI. 3 As mentioned in Section 2.3, the address range of
the NTB is not necessarily large enough to cover the entire address

3Legacy interrupts are not supported in the current Device Lending implementation,
as they can not be remapped over the NTB.

Application

NVMeoF Host Driver

Interconnect

RDMA Facilitation

Transport Layer

NVMeoF Target DriverNVMe Driver

NVMe SSD

Interconnect

RDMA Facilitation

Transport Layer

PCIe PCIe or other IO bus

PCIe NTB

Local
"Borrower"

Remote
"Lender"

Device Lending

NVMeoF RDMA

Interconnect Link Interconnect Link

PCIe or other IO bus PCIe

Figure 4: Illustration of native NVMe using Device Lending
compared to NVMe over Fabrics using RDMA. Device Lend-
ing makes remote devices appear as if they are locally in-
stalled and there is no need for specialized support in de-
vices or drivers.

space of the borrowing system. Since it is generally not possible to
know in advance which memory addresses a device driver might
use for DMA transfers, we use an IOMMU on the borrower to set up
dynamic mappings to arbitrary addresses, allowing the lender to set
up a single DMA window. When the device driver calls the Linux
DMA API in order to create DMA buffers, the borrower intercepts
these calls. The borrower injects the IO address of the DMAwindow
prepared by the lender and sets up a local IOMMU mapping to the
DMA buffer. The driver then passes the injected address to the
device, completely unaware that the address is actually a far-side
address. This allows the device to reach across the NTB, transparent
to both driver and device. All address translations between the
different address domains are done in hardware (NTB and IOMMU),
meaning that we achieve native PCIe performance in the data path.

By allowing remote devices to appear to a system as if they are
locally installed, Device Lending is a method for decoupling devices
from the systems they physically reside in. As hosts can act as both
lender and borrower, we have created a highly flexible method of
assigning and reassigning devices to computers that currently need
them. We imagine this as hosts in the cluster contributing to a
pool of IO resources that can be cooperatively time-shared among
them. This has advantages over distributed IO using traditional
approaches; network interfaces can be assigned to a computer while
it needs high throughput, and released when it is no longer needed;

Flexible Device Sharing using Device Lending ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA

access latency in NVMe over Fabrics using RDMA can be eliminated
by borrowing the NVMe disk instead and accessing it directly, as
shown in Figure 4; large-scale CUDA programming tasks can make
use of multiple GPUs that appear to be local instead of relying on
middleware such as rCUDA [9]. In contrast to RDMA solutions,
Device Lending works for all PCIe devices, and do not require any
additional support in drivers.

Our original implementation, however, did not account for device-
to-device access when borrowing multiple devices from different
lenders. As the borrowing system is not aware that the devices
reside in different systems, we need a mechanism to resolve IO ad-
dresses to other borrowed devices, in order to fully achieve device
interoperability. In addition, our original implementation lacked
support for borrowers that are VM guests. Adding virtualization
support would greatly increase the usability of Device Lending, as
we introduce the flexibility of decoupled remote devices and be able
to dynamically assign devices using pass-through.

5 SUPPORTING VIRTUAL BORROWERS
Many modern architectures now implement IOMMUs, allowing
DMA and interrupts to be remapped. This makes it possible for
a driver running in a VM guest to access a device directly with-
out breaking out of the memory isolation, as the driver is able to
communicate with the device using IO virtual addresses. In Linux,
such pass-through of devices is supported in the KVM hypervisor
using the Virtual Function IO API [2] (VFIO). This API provides a
set of functions for mapping memory for the device and control
functionality, such as resetting the device, that the hypervisor can
call in order to set up necessary mappings for a VM instance.

A theoretical solution for passing through remote devices, would
be for the physical host to borrow the remote device, injecting the
device into its local device tree, and then implement these functions.
Such a solution would not be feasible due to the following reasons:

(1) The device would be borrowed by the physical host for as
long as it runs, regardless of whether any VM instances
would currently be using it or not. This would lead to poor
utilization of device resources.

(2) All devices borrowed by the same physical host would be
placed in to the same IOMMU domain by Device Lending.
KVM requires pass-through devices to be placed in a separate
IOMMU domain in order to prevent memory accesses that
could potentially break out of the memory isolation provided
by virtualization.

(3) Pass-through requires the entire address space of the guest
VM to be mapped for the device. As there is no method of
establishing this mapping before the VM instance is running,
we need a mechanism for pinning memory pages used by
the instance in order to create a DMA window.

In the 4.10 version of the Linux kernel, an extension to the VFIO
API called Mediated Devices (mdev) [13] was included. This exten-
sion makes it possible to use VFIO for paravirtualized devices. It
introduces the concept of a physical parent device having virtual
child devices. This allows mdev to intercept certain operations,
such as when the VM instance tries to access the device’s config-
uration space, or when KVM is setting up interrupts. The idea is
that a single physical device can be used to emulate multiple virtual

devices. In our case, using the mdev extension provides us with
finer grained control over what the hypervisor and guest OS is
attempting to do with the device than with the “plain” VFIO API.

Our prototype creates an mdev child device when a device is
discovered. This allows a hypervisor to pass through the device
to a VM instance without it being borrowed (and locally injected).
When the guest OS boots up and attempts to reset the device, we
do the actual borrowing. When the guest OS releases the device,
either by shutting down or because the VM instance hot-removes
it, we return the device. Not only does this solve the issue with the
lifetime of a borrowed device mentioned in (1), but it also makes it
possible to hot-add a device to a live VM instance.

As we now have control over when a device is being used, and
which VM instance is using it, resolving (2) becomes a matter of
setting up appropriate IOMMU groups. The borrower places the
mdev child device in an IOMMU group that satisfies isolation re-
quirements by KVM. In addition, when the device is borrowed, we
establish an IOMMU domain on the lender-side as well, in order to
map the future DMA window as well as protecting against rogue
memory accesses.

While other implementations using mdev implement virtual
child devices, each with their own set of emulated resources, we are
passing through the physical device itself. This difference becomes
apparent when the guest driver initiates DMA transfers; virtual
device implementations emulate device registers, and are therefore
able to notify KVM to pin the appropriate memory pages before
initiating the physical DMA engine. In our case, the VM instance
maps the physical device registers and accesses the device directly,
which means that without making assumptions about the type of
device being used and implementing virtual registers for it, we are
not able to replicate this specific behavior. As mentioned in (3), we
are also not able to make KVM pin any memory pages until the
VM instance is actually loaded and the guest OS boots up, because
only then will the memory used by the VM actually be allocated.

However, in order for a device to do DMA, a dedicated register
in the device’s configuration space must be set. This register is
common for all PCIe devices. Relying on the assumption that this
register is disabled until the guest OS is booting up (and memory
for the instance has been allocated), our solution is to intercept
when a configuration cycle enables this register, and then notify
KVM to pin pages. With the pages now locked in memory, we are
able to properly set up a DMA window to memory used by the VM
instance using the lender-side IOMMU domain we prepared earlier.

Finally, VFIO and mdev use the eventfd API to trigger interrupts
in the VM instance. Our current prototype intercepts calls to the
configuration space that enables interrupts and sets up an interrupt
handler on the lender-side. Whenever the device triggers an inter-
rupt, the lender must notify the borrower, which in turn notifies the
hypervisor, using eventfd. This method is not ideal, as the latency
of triggering an interrupt is increased. A benefit, however, is that it
allows us to enable legacy interrupts for devices borrowed by a VM,
which is currently not supported when the borrower is a physical
machine.

ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA Jonas Markussen et al.

6 MULTI-DEVICE INTEROPERABILITY
Some processing workloads may require the use of multiple IO
devices, and moving data between them in an efficient manner.
This often involves the use device-to-device DMA, as described
in Section 2.1, where a device is able to read from or write to the
memory regions of other devices. However, as IOMMUs introduce a
virtual address space for devices, TLPs must be routed through the
root of the PCIe tree in order for the IOMMU to resolve virtual ad-
dresses. This means that peer-to-peer transactions directly between
devices in the fabric is not possible when using an IOMMU. PCI-SIG
has developed an extension to the transaction layer protocol that
allows devices that have an understanding of IO virtual addresses
to cache resolved addresses [20], but this is not widely available as
it requires hardware support in devices.

Because of this, the general perception among device vendors
and driver developers has become that in order to make peer-to-
peer transactions work, the IOMMU must be disabled. This has
led to a situation where device drivers would indiscriminately use
physical addresses when setting up peer-to-peer access between
devices. For our original Device Lending implementation, this posed
a challenge, as we rely on intercepting calls made by the device
driver to inject our own mappings in order to make DMA across
the NTB transparent. However, this changed with the 4.9 version of
the Linux kernel, when the DMA API was extended with a unified
method for setting up mappings between devices. This extension
makes it possible for Device Lending to intercept when a device is
mapping another device’s memory regions.

However, as devices installed in different hosts reside in different
address space domains, the local IO address used by one host to
reach a remote device is not the same address a different host would
use to reach the same device. In order for a borrowed device, source,
to reach another borrowed device, target, the borrower needs a
mechanism to resolve virtual IO addresses it uses to addresses that
source’s lender would use to reach target. As such, our solution is
as follows:
• If target is local to the borrower, setting up a mapping is
trivial. The lender simply sets up DMA windows to the indi-
vidual memory regions of target, similar to how it already
has set up a DMA window to the borrower’s RAM. The
lender returns the local IO addresses it would use to reach
over the NTB to the memory regions of target. Note that this
would work for any device in the borrower, not only those
that are controlled by Device Lending.
• If target is locally installed in the same host as source (same
lender), the lender simply sets up a local IOMMU mapping
and returns the local IO addresses to the memory regions of
target.
• If target is a remote device (different lenders), the source’s
lender creates DMA windows through the appropriate NTB
to target’s lender. Note that this NTB may be different to the
one used in order to reach the borrower. It then returns the
memory addresses it would use to reach over the NTB to the
memory regions of target.

The borrower, after receiving these lender-local IO addresses, stores
them along with its own virtual addresses to the memory regions of
target. When the device driver using source calls the new DMA API

x8 Gen3

Intel Xeon
E5-2603 v4

RAM
DDR4

Nvidia
K420 PXH830

Lender

Intel Xeon
E5-2603 v4

RAM
DDR4

PXH830

Borrower

IOMMU Peer-to-peer

x16 Gen2

Local

Nvidia
K420

Borrowed
GPU

x8 Gen3

Figure 5: Configuration used in our IOMMU evaluation. The
borrower is using the remote GPU. When the lender-side
IOMMU is enabled, TLPs are routed through the lender’s
root before going over theNTB.Wehave also comparedwith
a local instance, running on the lender itself.

functions to map the memory regions of target for source, we are
able to look up the corresponding lender-local addresses and inject
these. The driver can in turn initiate DMA, completely unaware of
the location of both source and target, and the transfer will reach
target through the correct NTB.

7 PERFORMANCE EVALUATION
In this section, we evaluate the performance of our extensions to De-
vice Lending. As our newly added virtualization support require the
use of a lender-side IOMMU, we focus on the impact that IOMMU
address virtualization has on performance. With support for multi-
device interoperability, we have also evaluated the performance
of peer-to-peer transfers. For our evaluations, we use bandwidth
and latency as our performance metrics, as these two are the most
commonly used for comparing interconnects.

7.1 IOMMU performance penalty
Since IOMMUs create a virtual address space, TLPs need to be
routed through the root of the PCIe tree in order to resolve virtual
IO addresses, effectively disabling peer-to-peer transfers. Proces-
sor designs are complex and often not well-documented, making
it difficult to determine what exactly happens with the memory
operations in progress once they leave the PCIe complex and enter
the CPUs. Memory operations may be buffered, awaiting IOMMU
translations, or the IOMMUmay need to perform a multi-level table
look up for resolving addresses.

TLPs are either posted or non-posted operations, meaning that
some transactions, such as memory reads, require a completion.
Read requests are affected by the number of hops in the path be-
tween requester and completer; the longer the path, the higher
the request-completion latency becomes. As the number of read
requests in flight is limited by how many uncompleted transactions
a requester is able to keep open, a longer path can potentially re-
duce performance. In addition, PCIe allows a completer to respond
with less data at the time than is actually requested. For example, a
read TLP requesting 256 bytes may terminate with 4 completions
containing 64 bytes each, rather than a single completion with
256 bytes.

In order to isolate the consequence of TLPs being routed through
the root, we have used the setup shown in Figure 5. Two Intel Xeon
machines are connected together with Dolphin’s PXH830 NTB host

Flexible Device Sharing using Device Lending ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA
4

kB
8

kB
16

 k
B

32
 k

B
64

 k
B

12
8

kB
25

6
kB

51
2

kB
1

M
B

2
M
B

4
M
B

1

2

3

4

5

6

7

B
a
n
d
w

id
th

 (
G

B
/s

)

DMA Read (Host-to-Device)

4
kB

8
kB

16
 k

B
32

 k
B

64
 k

B
12

8
kB

25
6

kB
51

2
kB

1
M
B

2
M
B

4
M
B

DMA Write (Device-to-Host)

Local (Peer-to-peer)
Remote (Peer-to-peer)
Remote (IOMMU)

CUDA Samples bandwidthTest

Figure 6: Reported bandwidth for different transfer sizes.

adapters [8] and an external x8 PCIe cable. The lender has a PCIe
switch on the motherboard, with both the NTB adapter and an
Nvidia Quadro K420 GPU sitting below it. Note that since the K420
is Gen2 x16, we only need a Gen3 x8 link between the NTB adapters,
as they provide approximately the same bandwidth.

For this evaluation, we have chosen to create a high-bandwidth
workload using the bandwidthTest [18] program. This utility pro-
gram is from the CUDA Toolkit samples. Choosing this program
serves an additional purpose, demonstrating that Device Lending
truly works with remote devices, without requiring changes to
application or driver software. The bandwidth is measured running
on the borrower, using the remote K420’s onboard DMA engine to
copy data between GPU memory and borrower’s RAM. For each
transfer size, bandwidthTest initiates 100 transfers and then report
the average bandwidth.

Figure 6 shows the reported average bandwidth for both DMA
writes and DMA reads, comparing the performance of shortest path
(peer-to-peer) with TLPs being routed through the root (IOMMU).
We observe that the reported bandwidth is reduced when the
IOMMU is enabled, especially for the read performance. As men-
tioned, a PCIe completer is allowed to reply with multiple comple-
tions to a single request. In our case, using a PCIe tracer similar in
concept to that of network packet tracers, we observe that the read
TLPs are actually modified by the lender-side CPUs (and not the
completer). The maximum TLP payload size in our configuration is
256 bytes, meaning that devices can write or read up to 256 bytes per
request. We observe, however, that every 256 byte request routed
through the root is changed into 4×64 byte read requests before
they are sent over the NTB. As read performance is already lim-
ited by the number of requests they are able to keep open, already
changing the request size at the local side leads to less data being
requested at the time, which again leads to very poor utilization of
the link. Although not as bad as reads, write performance is also
affected when the lender-side IOMMU is enabled.

Note that we have also compared our results to running locally on
the lender, without using Device Lending. The achieved bandwidth
of the local run is slightly better than our peer-to-peer performance,
especially for the smaller transfer size; this is most likely due to
the fact that the GPU sits physically farther away from the CPU
running the driver, and therefore slightly increasing the time it
takes to initiate a DMA transfer as well as other synchronization
with the devices. We observe that for sizes of 1 megabyte and more,
the significance of this additional latency decreases.

Local B-Phys B-VM

1.8

2.0

2.2

2.4

2.6

2.8

B
a
n
d
w

id
th

 (
G

B
/s

)

1024 Sequential Blocks

Local B-Phys B-VM

7.2

7.4

7.6

7.8

8.0

8.2

8.4

La
te

n
cy

 (
m

ic
ro

se
co

n
d
s)

Random Pages (4 Blocks)

NVMe Read Performance

Figure 7: Bandwidth and latency when reading from disk
(DMA write). We read 1024 sequential blocks for measuring
bandwidth, and 4 blocks with a random offset for latency.

7.2 Pass-through comparison
We have evaluated our KVM implementation using an Intel Optane
900P NVMe disk on a local machine without using Device Lending,
a physical borrower (B-Phys), and from a VM guest (B-VM). The ma-
chines are connected back-to-back using PXH830 NTB adapters [8].
The RAM-to-RAM latency was measured to 550-580 nanoseconds,
where the NTB adds around 350-370 nanoseconds. We have used
QEMU 2.10.1 as our VM emulator, and running Ubuntu 17.04 LTS
as the guest OS. Note that while any guest OS would be possible,
including Microsoft Windows, we have chosen Linux in order to
run the same benchmarking code on a physical borrower, as well
as locally on the lender.

Figure 7 shows the bandwidth for reading 1024 sequential blocks
repeated 1000 times. One block is 512 bytes. There is very little
difference in the achieved bandwidth, except for a few additional
outliers for our VM borrower (B-VM). Interestingly, we observe that
the physical borrower (B-Phys) achieves slightly higher median
bandwidth than the local comparison.

Latency was measured by reading 4 blocks repeated 10,000 times,
each time at a random offset. Here, we observe that the difference
between running locally and on the physical borrower is an increase
in a little less than 1 microsecond. As the device now sits remotely,
it has to first reach over the NTB once in order to retrieve the IO
commands, and then reach over the NTB again in order to post
the IO completion. This adds 700-730 nanoseconds to the latency,
and is therefore an expected increase. We observe that passing the
disk to a VM running on the borrower (B-VM), only increases the
latency slightly compared to the physical borrower (B-Phys).

7.3 Device-to-device evaluation
In order to evaluate our multi-device support, we have evaluated
the performance of device-to-device DMA transfers between two
Nividia Quadro K420 GPUs. Using the CUDA API [18], there are
two ways of initiating DMA transfers. The first one is similar to
the bandwidthTest program, using the cudaMemcpy() function with
device-to-device semantics. Using this method, the driver initiates
the DMA transfer. The other method is code running on one GPU
that writes to another GPU’s memory directly. We have therefore
developed two CUDA programs, one using the first method to
measure DMA bandwidth (similarly to bandwidthTest) and the other
to measure latency between the GPUs using the second method.
Through CUDA’s unified memory model, it is possible for the GPUs

ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA Jonas Markussen et al.

Intel Xeon
E5-2603 v4

DDR4
2133 MHz

Intel Xeon
E5-2603 v4

DDR4
2133 MHz

Borrower

Intel Xeon
E5-1650 v4

DDR4
2133 MHz

Nvidia
K420 Lender B

Lender A

IOMMU (1L-IOMMU)

Peer-to-Peer (1L-P2P)

Nvidia
K420

PXH830

PXH830

PXH830

Nvidia
K420

Nvidia
K420

Local Peer-to-Peer

(a) Two GPUs borrowed from the same lender.

Intel Xeon
E5-2603 v4

DDR4
2133 MHz

Intel Xeon
E5-2603 v4

DDR4
2133 MHz

Borrower

Intel Xeon
E5-1650 v4

DDR4
2133 MHz

Nvidia
K420

Lender B

Lender A

IOMMU (2L-IOMMU)

Peer-to-Peer (2L-P2P)

Nvidia
K420

PXH830 PXH830

PXH830Nvidia
K420

Nvidia
K420

(b) Two GPUs borrowed from different lenders.

Figure 8: The 3-node cluster configurations used in our
multi-device evaluation, showing the data path for direct
device-to-device transactions.

to access memory residing in RAM, without needing to explicitly
copy it to GPU memory. Our two programs therefore also support
this option, where one GPU first must write to the borrower’s RAM,
and then the other GPU must read from the borrower’s RAM. Note
that we do not use any special semantics in order to make our
CUDA programs work for remote borrowed GPUs, they simply
appear to the CUDA driver as if they are locally installed.

Figure 8 shows the two different configurations used in this eval-
uation, with the direct device-to-device data paths highlighted. Two
GPUs are installed either in the same lender (Figure 8a), or in differ-
ent lenders (Figure 8b). The machines are connected together using
the PXH830 NTB adapter in a three-way configuration, providing a
separate Gen3 x8 link between all three machines. The K420 GPUs
are Gen2 x16, which is roughly the same bandwidth as Gen3 x8.
Note that we have also included a peer-to-peer comparison, by
running our same programs on Lender A.

As part of our evaluation, we have also evaluated the perfor-
mance when memory buffers accessed by the GPUs reside in the
borrower’s RAM. In these scenarios, one GPU has to first write (over
the NTB) to the borrower’s RAM, and then the other GPU must
read from the borrower’s RAM (also over the NTB). The different
data paths are illustrated in Figure 9. Note that each additional “hop”
in the total path adds additional latency to the overall completion
time. To summarize, we have evaluated the bandwidth and latency
performance for the scenarios listed in Table 1.

7.3.1 Bandwidth. Using cudaMemcpy() for initiating transfers
and cudaEventRecord() for recording time before and after trans-
fers, our bandwidth program measures the DMA bandwidth for

Name Scenario Mem. IOMMU
Local Two local GPUs installed in same

machine as driver.
GPU Disabled

1L-P2P Two remote GPUs borrowed
from the same lender.

GPU Disabled

1L-IOMMU Two remote GPUs borrowed
from the same lender.

GPU Enabled

2L-P2P Two remote GPUs borrowed
from different lenders.

GPU Disabled

2L-IOMMU Two remote GPUs borrowed
from different lenders.

GPU Enabled

1L-RAM-P2P Two remote GPUs borrowed
from the same lender.

RAM —

2L-RAM-P2P Two remote GPUs borrowed
from different lenders.

RAM Disabled

2L-RAM-IOMMU Two remote GPUs borrowed
from different lenders.

RAM Enabled

Table 1: Scenarios used in our device-to-device evaluation.

different transfer sizes, as depicted in Figure 10. Each transfer size
is repeated 10,000 times, and we have plotted the median. The filled-
out areas show the 1st to 99th percentiles, demonstrating that the
variance between multiple runs is very low.

Comparing 1L-P2P and the local comparison in the top plot, the
DMA bandwidth for smaller transfer sizes are affected by the longer
distance between driver and GPU. As transfer sizes become larger,
this factor decreases in significance, and for transfers of 4 megabyte
and above, it is negligible. As with bandwidthTest (Figure 6), which
also uses CUDA events to record time, we suspect that the protocol
used by the driver in order to synchronize the GPU involves the
driver going back and forth over the NTB multiple times.

As seen in Figure 10, direct device-to-device transfer is a DMA
write operation only. Therefore, the difference between peer-to-
peer transfers and when the IOMMU is enabled is not so extreme as
it would be for reads. 2L-IOMMU is affected by needing to traverse
both Lender A’s and Lender B’s roots, achieving slightly lower band-
width than 1L-IOMMU. We see that when peer-to-peer transfers
are possible (2L-P2P), the bandwidth is not significantly affected
by having to traverse the NTB.

For transfers accessing the borrower’s memory, however, the
situation is quite different, as illustrated in Figure 10. As one GPU
has to first write to borrower’s RAM, before the other GPU can read
from RAM, the read operation is the most significant performance
factor. The performance is comparable to DMA reads shown in
Figure 6, where routing read TLPs through the root appears to
drastically reduce the link utilization because the read requests are
altered. Peer-to-peer transactions that do not cross the root achieve
a little under 6 GB/s (2L-RAM-P2P), which is themaximum expected
for reads. Note that in the 1L-RAM-P2P scenario, traffic would
traverse the same path regardless of the IOMMU being enabled
or not (as depicted in Figure 9). We observe that this achieves
the exact same performance as 2L-RAM-IOMMU, indicating that
routing reads through the root generally leads to poor performance,
and is not (exclusively) related to the use of IOMMUs.

7.3.2 Latency. We have also measured the ping-pong latency
between two GPUs through CUDA’s peer model. One GPU is tasked
with increasing a counter, writing it to the other GPU’s memory
and waiting for an acknowledgement before continuing. The other
GPU waits for the counter to increase by one, and acknowledges
the increase by writing back the first GPU’s memory. This process
of counting upwards is repeated 100,000 times. For every step,

Flexible Device Sharing using Device Lending ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA

Lender A
Root

K420 K420

K420 K420

K420 PXH830 PXH830 K420

Lender A
Root

K420 PXH830
Lender B

Root
PXH830 K420

K420 PXH830 PXH830 PXH830 PXH830 K420

Lender A
Root

K420 PXH830 PXH830 Borrower
Root

PXH830
Lender A

Root
PXH830 K420

Lender A
Root

K420 PXH830 PXH830 PXH830
Lender B

Root
PXH830 K420

1L-P2P (One Lender)
Direct to GPU Memory

1L-IOMMU (One Lender)
Direct to GPU Memory

2L-P2P (Two Lenders)
GPU Memory over NTB

2L-IOMMU (Two Lenders)
GPU Memory over NTB

2L-RAM-P2P (Two Lenders)
Via Borrower's RAM

2L-RAM-IOMMU (Two Lend.)
Via Borrower's RAM

1L-RAM-P2P (One Lender)
Via Borrower's RAM

RAM

Borrower
Root

RAM

Borrower
Root

RAM

Device

PLX Switch

Link

External Cable

Figure 9: Data paths for the different scenarios. Each hop slightly increases the completion latency.

1

2

3

4

5

6

7

B
a
n
d
w

id
th

 (
G

B
/s

)

DMA Bandwidth -- One Lender (GPU Memory)

Local (Peer-to-peer)
1L-P2P
1L-IOMMU

1

2

3

4

5

6

7

B
a
n
d
w

id
th

 (
G

B
/s

)

DMA Bandwidth -- Two Lenders (GPU Memory)

Local (Same lender)
2L-P2P
2L-IOMMU

4
kB

8
kB

16
 k

B
32

 k
B

64
 k

B
12

8
kB

25
6

kB
51

2
kB

1
M
B

2
M
B

4
M
B

8
M
B

16
 M

B
32

 M
B

64
 M

B
12

8
M
B

1

2

3

4

5

6

7

B
a
n
d
w

id
th

 (
G

B
/s

)

DMA Bandwidth (via Borrower's RAM)

Local (Same lender)
1L-RAM-P2P
2L-RAM-P2P
2L-RAM-IOMMU

Figure 10: Median DMA bandwidth for different transfer
sizes. Thefilled-out area represents the distribution between
the 1st and 99th percentile for 10,000 runs. The local compar-
ison is included in all three plots.

Local 1L-P2P 1L-IOMMU 2L-P2P 2L-IOMMU

2

4

6

8

10

La
te

n
cy

 (
m

ic
ro

se
co

n
d
s)

1.92 1.92 2.17 2.64
3.58

Ping-Pong Latency (GPU Memory)

1L-RAM-P2P 2L-RAM-P2P 2L-RAM-IOMMU

2

4

6

8

10

La
te

n
cy

 (
m

ic
ro

se
co

n
d
s)

5.88
4.66

5.88

Ping-Pong Latency (via Borrower's RAM)

Figure 11: 99th percentiles of ping-pong latencies.

the current GPU clock cycle count is recorded and divided by the
GPU’s clock frequency. This provides us with an alternative to
cudaEventRecord() for recording elapsed time, and we avoid any
delay caused by explicit synchronization.Wemeasured the RAM-to-
RAMmemory latency between the borrower and lender B to around
700 nanoseconds, where the NTB adds 350-365 nanoseconds.

Figure 11 shows the 99th percentile of ping-pong latencies for
100,000 repeated runs. The distribution between different runs is
very low (less than 25 nanoseconds between minimum and maxi-
mum observed latency for each scenario). Using our alternative time
recording eliminates additional access latency in the synchroniza-
tion protocol between driver and GPU. When GPUs reside behind
the same switch (1L-P2P), we achieve the same latency as for our lo-
cal comparison. As the data paths increase, the latencies increase as
well. We see that the latency for 2L-P2P increases with a little more
than 700 nanoseconds, compared to 1L-P2P. This corresponds with
the 350 nanoseconds added by the NTB (in one direction). For the
scenarios where the memory buffers are hosted in the borrower’s
RAM, the latency increases significantly. Since their paths are the
same, 1L-RAM-P2P and 2L-RAM-IOMMU have the same latency.

8 DISCUSSION AND CONCLUSION
In this paper, we presented our implementation for supporting
interoperability between remote devices. As part of our work, we
evaluated the impact of IO address virtualization on performance.
Specifically, we have shown how lender-side IOMMUs affect the
data path in terms of latency and bandwidth. As observed in our
evaluations, longer paths introduce some additional latency for
TLPs. When the driver and the device frequently communicate
with each other, as seen in our GPU bandwidth evaluations, it
may affect performance as TLPs has to go back and forth over
the NTB. For device-to-device transfers that do not require driver
synchronization, as is the case for our ping-pong latency evaluation,
the distance between GPUs and driver is insignificant. It should be
noted that traversing the NTB adds less than half of the latency
added by InfiniBand FDR adapters [16, 25]. We have shown that
Device Lending works without adding any performance overhead
beyond what is expected of longer PCIe paths and the interconnect.

A major performance bottleneck occurs when DMA read re-
quests are routed through the root, as the Intel Xeon CPUs used in
our evaluation alter the requests in a way that leads to decreased
utilization of the PCIe links. We observed that this drastically re-
duces performance for some scenarios. However, this effect was

ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA Jonas Markussen et al.

also observed when the IOMMUwas not enabled as well, appearing
to be a problem with routing through the root in general, and not
specifically related to IOMMU address translation. As our KVM
implementation relies on the lender-side IOMMU, it is worth in-
vestigating further by evaluating other CPU architectures that im-
plement an IOMMU, such as AMD EPYC/Zen and IBM POWER.
Additional benefits to using the IOMMU include lenders isolating
devices in their own domains, and remapping NTB mappings to
lower memory for devices that do not support the entire 64-bit
address space. For non-VM borrowers, routing through the root can
be avoided by using PCIe switches and peer-to-peer transactions.

Additionally, our evaluation also demonstrates that it is possible
to use remote IO resources without requiring any special semantics
in application code or support in device drivers. We argue that
being able to run the exact same code using remote GPUs as if they
were locally installed, thus making use of one of the most complex
GPU drivers on the market, demonstrate the strength of Device
Lending compared to other approaches to distributed IO.

Finally, we have also presented how we have extended Device
Lending with support for passing through borrowed remote de-
vices for the KVM hypervisor. We have passed through a remote
SSD to a VM guest, achieving the same bandwidth as the disk was
locally installed and only slightly higher latency than that of a
disk borrowed by a physical machine. Having built the infrastruc-
ture for this, we are currently investigating if a malicious VM can
break out of the VM isolation by misusing Device Lending. Another
candidate for further investigation is if possible to migrate VM
instances running on one host to another with borrowed devices
being passed-through. With our VM support and multi-device sup-
port, it is possible to offer highly customizable configurations of
passed through remote devices, and dynamically reassign devices
in order to optimize resource utilization.

ACKNOWLEDGMENTS
This work has been performed mainly in the context of the BIA project
PCIe (#235530) funded by the Research Council of Norway (RCN), with
contributions from the LADIO project (EU H2020 #731970). The authors
would like to thank Kristoffer Robin Stokke for feedback on the manuscript.
We also thank Stig Baugstø, Roy Nordstrøm and Hugo Kohmann at Dolphin
Interconnect Solutions AS.

REFERENCES
[1] [n. d.]. Linux IOMMU Support. Retrieved April 28, 2018 from https://www.

kernel.org/doc/Documentation/Intel-IOMMU.txt
[2] [n. d.]. VFIO - "Virtual Function I/O". Retrieved April 28, 2018 from https:

//www.kernel.org/doc/Documentation/vfio.txt
[3] Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger, Greg Regnier,

Rajes Sankaran, Ioannis Schoinas, Rich Uhlig, Balaji Vembu, and John Weigert.
2006. Intel Virtualization Technology for Directed I/O. Intel Technology Journal
10, 03 (2006).

[4] Knut Alnæs, Ernst H. Kristiansen, David B. Gustavson, and David V. James.
1990. Scalable Coherent Interface. In Proceedings of International Conference on
Computer Systems and Software Engineering (CompEuro). 446–453.

[5] Chelsio Communications Inc. 2015. The Case Against iWARP. Retrieved
April 28, 2018 from https://www.chelsio.com/wp-content/uploads/resources/
iWARP-Myths.pdf

[6] Paolo Costa, Hitesh Ballani, Kaveh Razavi, and Ian Kash. 2015. R2C2: A network
stack for rack-scale computers. ACM SIGCOMMComputer Communication Review
45, 4 (2015), 551–564.

[7] Alexandros Daglis, Stanko Novaković, Edouard Bugnion, Babak Falsafi, and Boris
Grot. 2015. Manycore network interfaces for in-memory rack-scale computing.
ACM SIGARCH Computer Architecture News 43, 3 (2015), 567–579.

[8] Dolphin Interconnect Solutions AS. [n. d.]. PXH830 Gen3 PCI Express NTB Host
Adapter. Retrieved March 1, 2018 from http://www.dolphinics.no/products/
PXH830.html

[9] J. Duato, A.J. Pena, F. Silla, R. Mayo, and E.S. Quintana-Ortí. 2010. rCUDA:
Reducing the number of GPU-based accelerators in high performance clusters.
In Proceedings of International Conference on High Performance Computing and
Simulation (HPCS). 224–231.

[10] T. Fountain, A. McCarthy, and F. Peng. 2005. PCI Express: An Overview of PCI
Express, Cabled PCI Express and PXI Express. In Proceedings of International
Conference on Accelerator & Large Expt. Physics Control Systems (ICALEPCS).

[11] John P Hayes, Trevor Mudge, Quentin F Stout, Stephen Colley, and John Palmer.
1986. A Microprocessor-based Hypercube Supercomputer. IEEE Micro 6, 5 (1986),
6–17.

[12] Jian Huang, Xiangyong Ouyang, Jithin Jose, Md Wasi-Ur-Rahman, Hao Wang,
Miao Luo, Hari Subramoni, Chet Murthy, and Dhabaleswar K. Panda. 2012. High-
performance design of hbase with RDMA over InfiniBand. In Proceedings of
International Parallel and Distributed Processing Symposium (IPDPS). 774–785.

[13] Neo Jia and Kirti Wankhede. [n. d.]. VFIO Mediated Devices. Retrieved April 29,
2018 from https://www.kernel.org/doc/Documentation/vfio-mediated-device.txt

[14] Weihang Jiang, Jiuxing Liu, Hyun-Wook Jin, D K Panda, W Gropp, and R Thakur.
2004. High performance MPI-2 one-sided communication over InfiniBand. In Pro-
ceedings of International Symposium on Cluster Computing and the Grid (CCGrid).
531–538.

[15] Lars Bjørlykke Kristiansen, Jonas Markussen, Håkon Kvale Stensland, Michael
Riegler, Hugo Kohmann, Friedrich Seifert, Roy Nordstrøm, Carsten Griwodz, and
Pål Halvorsen. 2016. Device Lending in PCI Express Networks. In Proceedings
of International Workshop on Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV). 10:1–10:6.

[16] Mellanox Technologies. 2017. RoCE vs. iWARP Competitive Analysis. Retrieved
April 28, 2018 from http://www.mellanox.com/related-docs/whitepapers/WP_
RoCE_vs_iWARP.pdf

[17] NVIDIA Corporation. [n. d.]. Nvidia Virtual GPU Technology (vGPU). Retrieved
April 28, 2018 from http://www.nvidia.com/object/virtual-gpus.html

[18] NVIDIA Corporation. 2017. CUDA Toolkit Documentation 9.1.85. Retrieved
April 29, 2018 from http://docs.nvidia.com/cuda/

[19] Peripheral Component Interconnect Special Interest Group (PCI-SIG). 2008.
Multi-root I/O Virtualization and Sharing Specification. https://www.pcisig.com/
specifications/iov/multi-root/

[20] Peripheral Component Interconnect Special Interest Group (PCI-SIG) 2009. Ad-
dress Translation Services Revision 1.1. Peripheral Component Interconnect Special
Interest Group (PCI-SIG). https://www.pcisig.com/specifications/iov/ats/

[21] Peripheral Component Interconnect Special Interest Group (PCI-SIG). 2010. PCI
Express 3.1 Base Specification. https://pcisig.com/specifications

[22] Peripheral Component Interconnect Special Interest Group (PCI-SIG). 2010.
Single-root I/O Virtualization and Sharing Specification. https://www.pcisig.
com/specifications/iov/single-root/

[23] Murali Ravindran. 2008. Extending Cabled PCI Express to Connect Devices
with Independent PCI Domains. In Proceedings of the 2nd annual IEEE Systems
Conference (SysCon). 1–7.

[24] Jack Regula. 2004. Using Non-transparent Bridging in PCI Express Systems. PLX
Technology, Inc. White paper.

[25] Davide Rosetti. 2014. Benchmarking GPUDirect RDMA on Modern Server Plat-
forms. Retrieved April 29, 2018 from http://devblogs.nvidia.com/parallelforall/
benchmarking-gpudirect-rdma-on-modern-server-platforms/

[26] Kazuo Saito, Koji Anai, Keiju Igarashi, Takeshi Nishikawa, Ryoichi Himeno, and
Kazuhiro Yoguchi. 1998. ATM bus system. US patent No. 5,796,741 A.

[27] Mark J. Sullivan. 2010. Intel Xeon Processor C5500/C3500 Series Non-Transparent
Bridge. Technical Report. Intel Corporation.

[28] Jun Suzuki, Yoichi Hidaka, Junichi Higuchi, Teruyuki Baba, Nobuharu Kami, and
Takashi Yoshikawa. 2010. Multi-root Share of Single-Root I/O Virtualization
(SR-IOV) Compliant PCI Express Device. In Proceedings of Symposium on High
Performance Interconnects (HOTI). IEEE, 25–31.

[29] A Trivedi, BMetzler, and P Stuedi. 2011. A case for RDMA in clouds. In Proceedings
of the Second Asia-Pacific Workshop on Systems (APSys). 17:1–17:5.

[30] Cheng-Chun Tu, Chao-tang Lee, and Tzi-cker Chiueh. 2013. Secure I/O Device
Sharing Among Virtual Machines on Multiple Hosts. ACM SIGARCH Computing
Architecture News 41, 3 (2013), 108–119.

[31] A. Venkatesh, H. Subramoni, K. Hamidouche, and Dhabaleswar K. Panda. 2014.
A high performance broadcast design with hardware multicast and GPUDirect
RDMA for streaming applications on Infiniband clusters. In Proceedings of Inter-
national Conference on High Performance Computing (HiPC).

[32] Colin Whitby-Strevens. 1985. The transputer. ACM SIGARCH Computer Archi-
tecture News 13, 3 (1985), 292–300.

[33] Heymian Wong. [n. d.]. PCI Express Multi-Root Switch Reconfiguration During
System Operation. Master’s thesis. Massachusetts Institute of Technology.

https://www.kernel.org/doc/Documentation/Intel-IOMMU.txt
https://www.kernel.org/doc/Documentation/Intel-IOMMU.txt
https://www.kernel.org/doc/Documentation/vfio.txt
https://www.kernel.org/doc/Documentation/vfio.txt
https://www.chelsio.com/wp-content/uploads/resources/iWARP-Myths.pdf
https://www.chelsio.com/wp-content/uploads/resources/iWARP-Myths.pdf
http://www.dolphinics.no/products/PXH830.html
http://www.dolphinics.no/products/PXH830.html
https://www.kernel.org/doc/Documentation/vfio-mediated-device.txt
http://www.mellanox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf
http://www.mellanox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf
http://www.nvidia.com/object/virtual-gpus.html
http://docs.nvidia.com/cuda/
https://www.pcisig.com/specifications/iov/multi-root/
https://www.pcisig.com/specifications/iov/multi-root/
https://www.pcisig.com/specifications/iov/ats/
https://pcisig.com/specifications
https://www.pcisig.com/specifications/iov/single-root/
https://www.pcisig.com/specifications/iov/single-root/
http://devblogs.nvidia.com/parallelforall/benchmarking-gpudirect-rdma-on-modern-server-platforms/
http://devblogs.nvidia.com/parallelforall/benchmarking-gpudirect-rdma-on-modern-server-platforms/

	Abstract
	1 Introduction
	2 PCIe overview
	2.1 Memory addressing and forwarding
	2.2 Virtualization support and pass-through
	2.3 Non-Transparent Bridging

	3 Related work
	3.1 Distributed IO using RDMA
	3.2 Virtualization approaches
	3.3 Partitioning the fabric

	4 Device Lending
	5 Supporting virtual borrowers
	6 Multi-device interoperability
	7 Performance evaluation
	7.1 IOMMU performance penalty
	7.2 Pass-through comparison
	7.3 Device-to-device evaluation

	8 Discussion and Conclusion
	Acknowledgments
	References

